Origin of suppressed demixing in casein/xanthan mixtures

نویسندگان

  • Kitty van Gruijthuijsen
  • Vishweshwara Herle
  • Remco Tuinier
  • Peter Schurtenberger
  • Anna Stradner
چکیده

We explore the properties of casein/xanthan mixtures for xanthan concentrations beyond those inducing phase separation. Previous work has successfully described the onset of demixing by depletion theory in the protein limit, where the xanthan polysaccharides, the polymers, are larger than the caseins from skim milk powder, the colloids (S. Bhat et al., J. Phys.: Condens. Matter, 2006, L339). We now extend these studies to xanthan concentrations in a range of c/c* 1⁄4 13–88, aiming to arrest the phase separation via a (transiently) arrested casein-rich phase. Surprisingly, we find that the casein-rich phase remains fluidic deep into the two-phase region, with an equilibrium composition that significantly differs from predictions for mixtures of hard spheres plus flexible polymer chains in a good solvent. Furthermore, we show that macroscopic phase separation is arrested for c/c* > 60. Our investigations reveal that the rheological properties of the mixtures are fully determined by the xanthan-rich phase with characteristic long relaxation times that depend remarkably strongly on the xanthan concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of deacetylation on the rheological properties of xanthan-guar interactions in dilute aqueous solutions.

An oscillating capillary rheometer was used to investigate the effects of xanthan deacetylation on the viscoelastic properties and intrinsic viscosity of xanthan and guar mixtures in dilute aqueous solutions. Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native xanthan did due to the destabilized helical structure and increased chain flexibility of the deacety...

متن کامل

Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect of salt concentration on the polymer interactions

An oscillating capillary rheometer was used to investigate the dynamic viscoelastic and intrinsic viscosity properties of deacetylated xanthan (0.025%), native xanthan (0.025%), guar gum (0.075%), and xanthan–guar mixtures in dilute solutions. Influence of ionic strength on xanthan conformation and interaction with guar gum was elaborated. As the salt concentration increased, a significant (P <...

متن کامل

Elusiveness of fluid-fluid demixing in additive hard-core mixtures.

The conjecture that when an additive hard-core mixture phase separates when one of the phases is spatially ordered, well supported by considerable evidence, is in contradiction with some simulations of a binary mixture of hard cubes on cubic lattices. By extending Rosenfeld's fundamental measure theory to lattice models we show that the phase behavior of this mixture is far more complex than si...

متن کامل

Demixing in binary mixtures of hard hyperspheres

– The phase behavior of binary fluid mixtures of hard hyperspheres in four and five dimensions is investigated. Spinodal instability is found by using a recent and accurate prescription for the equation of state of the mixture that requires the equation of state of the single component fluid as input. The role played by the dimensionality on the possible metastability of the demixing transition...

متن کامل

Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures.

Using a geometry-based fundamental measure density functional theory, we calculate bulk fluid phase diagrams of colloidal mixtures of vanishingly thin hard circular platelets and hard spheres. We find isotropic-nematic phase separation, with strong broadening of the biphasic region, upon increasing the pressure. In mixtures with large size ratio of platelet and sphere diameters, there is also d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012